(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, a(b(c(y)))) → f(b(c(a(b(x)))), y)
f(a(x), y) → f(x, a(y))
f(b(x), y) → f(x, b(y))
f(c(x), y) → f(x, c(y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, a(b(c(y)))) →+ f(b(c(a(b(x)))), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / a(b(c(y)))].
The result substitution is [x / b(c(a(b(x))))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, a(b(c(y)))) → f(b(c(a(b(x)))), y)
f(a(x), y) → f(x, a(y))
f(b(x), y) → f(x, b(y))
f(c(x), y) → f(x, c(y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, a(b(c(y)))) → f(b(c(a(b(x)))), y)
f(a(x), y) → f(x, a(y))
f(b(x), y) → f(x, b(y))
f(c(x), y) → f(x, c(y))
Types:
f :: c:b:a → c:b:a → f
a :: c:b:a → c:b:a
b :: c:b:a → c:b:a
c :: c:b:a → c:b:a
hole_f1_0 :: f
hole_c:b:a2_0 :: c:b:a
gen_c:b:a3_0 :: Nat → c:b:a
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
x,
a(
b(
c(
y)))) →
f(
b(
c(
a(
b(
x)))),
y)
f(
a(
x),
y) →
f(
x,
a(
y))
f(
b(
x),
y) →
f(
x,
b(
y))
f(
c(
x),
y) →
f(
x,
c(
y))
Types:
f :: c:b:a → c:b:a → f
a :: c:b:a → c:b:a
b :: c:b:a → c:b:a
c :: c:b:a → c:b:a
hole_f1_0 :: f
hole_c:b:a2_0 :: c:b:a
gen_c:b:a3_0 :: Nat → c:b:a
Generator Equations:
gen_c:b:a3_0(0) ⇔ hole_c:b:a2_0
gen_c:b:a3_0(+(x, 1)) ⇔ a(gen_c:b:a3_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_c:b:a3_0(
+(
1,
n5_0)),
gen_c:b:a3_0(
b)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_c:b:a3_0(+(1, 0)), gen_c:b:a3_0(b))
Induction Step:
f(gen_c:b:a3_0(+(1, +(n5_0, 1))), gen_c:b:a3_0(b)) →RΩ(1)
f(gen_c:b:a3_0(+(1, n5_0)), a(gen_c:b:a3_0(b))) →IH
*4_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
x,
a(
b(
c(
y)))) →
f(
b(
c(
a(
b(
x)))),
y)
f(
a(
x),
y) →
f(
x,
a(
y))
f(
b(
x),
y) →
f(
x,
b(
y))
f(
c(
x),
y) →
f(
x,
c(
y))
Types:
f :: c:b:a → c:b:a → f
a :: c:b:a → c:b:a
b :: c:b:a → c:b:a
c :: c:b:a → c:b:a
hole_f1_0 :: f
hole_c:b:a2_0 :: c:b:a
gen_c:b:a3_0 :: Nat → c:b:a
Lemmas:
f(gen_c:b:a3_0(+(1, n5_0)), gen_c:b:a3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_c:b:a3_0(0) ⇔ hole_c:b:a2_0
gen_c:b:a3_0(+(x, 1)) ⇔ a(gen_c:b:a3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_c:b:a3_0(+(1, n5_0)), gen_c:b:a3_0(b)) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
x,
a(
b(
c(
y)))) →
f(
b(
c(
a(
b(
x)))),
y)
f(
a(
x),
y) →
f(
x,
a(
y))
f(
b(
x),
y) →
f(
x,
b(
y))
f(
c(
x),
y) →
f(
x,
c(
y))
Types:
f :: c:b:a → c:b:a → f
a :: c:b:a → c:b:a
b :: c:b:a → c:b:a
c :: c:b:a → c:b:a
hole_f1_0 :: f
hole_c:b:a2_0 :: c:b:a
gen_c:b:a3_0 :: Nat → c:b:a
Lemmas:
f(gen_c:b:a3_0(+(1, n5_0)), gen_c:b:a3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_c:b:a3_0(0) ⇔ hole_c:b:a2_0
gen_c:b:a3_0(+(x, 1)) ⇔ a(gen_c:b:a3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_c:b:a3_0(+(1, n5_0)), gen_c:b:a3_0(b)) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)